大邑附近钢材拉弯厂商电话
拉弯行业的技术创新方向
智能自适应拉弯系统成为研发热点,通过光纤布拉格光栅(FBG)实时监测应变分布,自动调节工艺参数。绿色制造方面,水溶性润滑剂(COD<50mg/L)逐步替代矿物油基产品。材料创新上,铝锂合金(2195-T8)的拉弯工艺正在突破,其比强度较传统铝材高20%。设备厂商开发出多轴联动拉弯中心,集成冲孔、切割等功能,实现"一次装夹全工序完成"。德国某实验室研究的超声波辅助拉弯技术,可使304不锈钢的变形抗力降低35%,有望解决厚板(t>12mm)的成型难题。
型材弯曲工艺按照弯形设备和弯形工艺原理的不同可分为:拉弯成形(两维、三维)、辊弯成形、压弯成形、绕弯成形。按照工件形状的不同又可分为:二维弯形工件(见图1)、空间三维弯形工件(见图2)。下面,按照弯形设备和弯形工艺原理对弯形工艺进行归类总结。 1.拉弯成形工艺 (1)拉弯成形工作原理(二维)拉弯过程基本分为3个步骤:步,设备拉伸缸钳口夹住材料并给型材施加预拉伸力,达到材料屈服强度。第二步,拉弯机回转缸加载弯曲回转,拉伸缸按照程序设定轴向拉力,使型材围绕拉弯模具做贴合运动而使材料成形。第三步,根据材料变形回弹情况增加补拉伸(拉弯设备结构示意见图3)。拉弯成形过程中,工件在弯曲的同时,拉伸缸给工件施加轴向拉力,材料长度伸长部分被拉伸缸牵引补偿,这就避免了材料的起皱趋向,能够得到良好的弧度效果。
铝合金型材由于其高比强度、轻质和优良的成形性,越来越多地用作高速列车组的车体制造。在实际生产中,有效控制铝合金型材弯曲回弹并实现成形,依然是材料加工领域迫切需要解决的问题。本文分别通过解析计算和数值模拟方法对轨道列车开口结构型材弯曲成形中的回弹现象进行了研究,使用解析计算方法对型材弯曲回弹进行了预测,通过数值模拟方法对弯曲工艺参数进行优化,对于复杂曲率型材的成形,设计了拉压复合成形工艺。本文的主要研究内容及成果如下:(1)选择常用的6005A铝合金型材,进行了拉伸测试,获得了材料力学性能参数;选择3种典型型材零件,分别建立了拉弯成形、压弯成形和拉压复合弯曲成形的有限元模型。(2)对型材的弯曲加载过程和卸载回弹过程进行了受力分析,推导了型材弯曲加载后、卸载后和反向弹性加载后的应变表达式,建立了型材平面弯曲回弹的几何约束方程,并推导出型材拉弯和压弯成形回弹半径计算公式。将推导的回弹计算公式分别应用到三种型材弯曲成形的回弹计算中,并将计算结果与数值模拟结果进行了对析。结果表明在拉弯和压弯小曲率变形时,回弹解析计算结果与数值模拟结果的误差较小,其小误差范围分别为1.15%~2.26%和1.44%~1.83%。(3)通过数值模拟分析了不同工艺参数对铝合金型材拉弯成形的影响规律。结果显示,型材回弹量随预拉伸量、补拉伸量、包覆拉伸量和弯曲贴模角度的增大而减小,随着摩擦系数的增大而增大;型材成形后的截面畸变基本上随预拉伸量、补拉伸量和包覆拉伸量的增加而增加。将几种不同包覆拉伸量下型材回弹的模拟结果与解析计算结果进行对比研究,发现包覆拉伸量从0%增加到5%时,解析计算预测的回弹后半径值与数值模拟的相对偏差从1.83%降低到了1.01%。对铝合金型材压弯成形进行数值模拟,研究了弯曲半径、摩擦系数和弯曲中心角等工艺参数对型材压弯成形回弹的影响规律。模拟结果表明,在型材的同一位置上,弯曲半径和摩擦系数越大回弹越大,弯曲中心角越大回弹越小。(4)针对复杂曲率型材零件,提出了拉压复合成形方法。对先拉弯再分段压弯、压弯后补拉伸和拉弯-压弯同时加载的三种拉压复合成形方案进行了数值模拟研究。分析了型材拉压复合成形的规律,以及不同加载方式对回弹的影响。研究发现:在成形部大曲率型材时,采用先拉弯再分段压弯的成形方案可以有效改善拉弯加载下型材曲率过渡位置成形精度低的问题;采用压弯后补拉伸的成形方案可以在一定程度上减小压弯成形中回弹导致的成形误差。在成形收边-放边组合弯曲型材时,三种拉压复合成形方案中,先拉弯再分段压弯的回弹小,大回弹误差仅为1.4mm;拉弯-压弯同时加载的大回弹误差为2.8mm;采用压弯后补拉伸的成形方案同样可以降低压弯成形下的回弹,但整体成形精度并不高,大成形误差为9.1mm。
大邑附近钢材拉弯厂商电话
钓鱼时怕啥?大鱼脱钩跑掉?别闹了,有了这个钓鱼炮台架,轻松搞定。想想看,一条巨物上钩,挣扎着想逃跑。没有好的支撑,竿子可能直接被拉弯甚至断裂。但用上这款铝合金材质的钓竿撑杆架,稳如泰山。硬核支撑力,让大鱼乖乖就范。 这玩意儿设计超贴心,能兼容各种长度的鱼竿,长竿短竿都不在话下。支架结构稳定,调整角度随心所欲,简直是为钓鱼狂人量身定做。 重点来了,这种品质感满满的装备,到手居然只要一顿饭钱,不到20块就能拿下。是不是有点不敢相信
绕弯成形工艺(1)绕弯成形工作原理绕弯工艺分两种工作模式:①模式1:如图13所示,外辊轮4绕内辊轮8做回转运动,并且在内外辊轮的径向辊压力作用下,材料被碾压成形,称为“行星轮式”。②模式2:如图14所示,材料1被U形夹3固定在弯模2上,弯模2做圆周运动并带动材料1在压紧模5及导向模4作用下完成弯弧。 两种模式的区别在于:模式1材料纵向不动,而模式2材料在纵向随弯模运动,模式2在进行薄壁型材的弯弧中可以加入芯块,材料截面变形。绕弯成形在型材的弯弧工艺中被广泛应用,两种绕弯模式的有机结合可以进行复杂多弧度工件的实现,如图15中所示S形工件的绕弯。